威尼斯手机登录网址-威尼斯网站 澳门

  • 关注微信
  • |
  • 中文
  • |
  • English

威尼斯手机登录网址

关注生之源微信 获取更多信息

张锋谈CRISPR技术的应用与挑战

日期:2014-06-09 00:00:00

麻省理工学院的张锋(Feng Zhang)博士是近两年大热的CRISPR/Cas9技术的先驱开创者之一。2013年,这位80后的年轻华人科学家开发出了可用来编辑DNA、敲除指定基因的CRISPR/Cas系统,自此之后一直致力于推动这一技术走向完美。

2014年年初,张锋博士课题组与东京大学的研究人员合作,生成了CRISPR-Cas 系统的关键组成部分——Cas9复合体的第一张高分辨率图像。这些研究成果,有望帮助研究人员改良及进一步操控这一工具加速基因组研究,使得这一技术更加接近应用于人类遗传疾病治疗。

上世纪70年代开发出重组DNA技术标志着一个生物学新时代的开始。第一次,分子生物学家们获得了操控DNA分子的能力,使得研究某些基因以及利用它们来开发出新型的医学和生物技术变为可能。近年来,基因组工程学技术取得的进展引发了一场生物研究新革命。不再是在脱离基因组的背景下研究DNA,研究人员现在可以在几乎所有选择的生物体中直接编辑或是调控DNA序列的功能,使得他们能够阐明系统水平上基因组的功能组织,并鉴别出因果遗传变异。

广义上讲,基因组工程学就是指对基因组,它的环境(例如表观遗传标记),或它的输出信号(例如转录本)进行靶向修饰的过程。能够在真核生物,尤其是哺乳动物细胞中轻易及有效地做到这一点,为改变基础科学、生物技术和医药带来了极大的希翼。

在生命科学研究中,一些可以删除、插入和修饰细胞或生物体DNA序列的技术,使得阐析特异基因和调控元件的功能成为可能。多重编辑可进一步实现在更大的规模上调查基因或是蛋白质网络。同样,操控转录调控或是特异位点的染色质状态可以揭示出细胞内遗传物质的组织和利用机制,阐明基因组结构与功能之间的关系。

在生物技术中,精确地操控遗传构件和调控机器还可以推动逆向操控或重建有用的生物系统,例如在工业相关的生物体中提高生物燃料生产信号通路或是构建出抗感染的作物。此外,基因组工程学正在推动新一代的药物研发和医药治疗。同时干扰多个基因可以模拟出作为复杂多基因疾病基础的累加效应,促成新的药物靶点,而基因组编辑则可以在人类基因治疗的背景下直接纠正有害突变。

真核生物基因组包含数以亿计的DNA碱基,因此难于对其进行操控。开发出借助同源重组(HR)的基因打靶技术是基因组操控取得的一个突破。通过操作具种系嵌合能力(germline competent)的干细胞,HR介导的基因打靶促进了生成敲进和敲除动物模型。然而,尽管HR介导的基因打靶可高度精确地改变遗传序列,但目的重组事件的效率却非常低下,给大规模应用基因打靶实验带来了巨大的挑战。

为了克服这些挑战,近年来开发出了一系列基于核酸酶的可编程基因组编辑技术,使得能够靶向性地、高效地改造多种真核生物,尤其是哺乳动物物种。在当前的基因组编辑技术中,发展最快的就是一类称作为Cas9的RNA引导核酸酶,其来自于细菌的适应性免疫系统CRISPR,借助于短RNA分子的引导Cas9可以轻易地靶向几乎所有的基因组选择位点。

在这篇综述中,编辑概述了CRISPR/Cas9作为一种平台技术的开发状况以及在基因组编辑方面的应用,也讨论了其存在的一些挑战,以及未来的创新之路。

威尼斯手机登录网址|威尼斯网站 澳门

XML 地图 | Sitemap 地图